Gels (Aug 2023)

Development of Soft Luliconazole Invasomes Gel for Effective Transdermal Delivery: Optimization to In-Vivo Antifungal Activity

  • Sunitha Kumari,
  • Omar Awad Alsaidan,
  • Dibyalochan Mohanty,
  • Ameeduzzafar Zafar,
  • Swagatika Das,
  • Jeetendra Kumar Gupta,
  • Mohammad Khalid

DOI
https://doi.org/10.3390/gels9080626
Journal volume & issue
Vol. 9, no. 8
p. 626

Abstract

Read online

Luliconazole (LZ) is a good candidate for the treatment of fungal infection topically but has limitations, i.e., poor solubility and poor permeability to skin. Due to these limitations, multiple administrations for a long time are required to treat the inflection. The aim of the present study was to develop the invasomes (IVS) gel of LZ to improve the topical antifungal activity. The IVS was prepared by the thin-film hydration method and optimized by Box-Bhekhen design software. The optimized LZIVS (LZIVSopt) has 139.1 ± 4.32 nm of vesicle size, 88.21 ± 0.82% of entrapment efficiency, 0.301 ± 0.012 of PDI, and 19.5 mV (negative) of zeta potential. Scanning microscopy showed a spherical shape of the vesicle. FTIR spectra showed there is no interaction between the drug and lipid. Thermogram showed that the LZ is encapsulated into the LZIVS matrix. LZIVSopt gel (LZIVSopt-G3) exhibited optimum viscosity (6493 ± 27 cps) and significant spreadability (7.2 g·cm/s). LZIVSopt-G3 showed 2.47-fold higher permeation than pure LZ-gel. LZIVSopt-G3 did not show any edema or swelling in the skin, revealing that the developed formulation is non-irritant. LZIVSopt-G3 exhibited significant inhibition of the fungus infection (C. albicans) in the infected rats. The finding concluded that IVS gel is a good carrier and an attractive approach for the enhancement of topical delivery of LZ to treat the fungal infection.

Keywords