Applied Sciences (Apr 2022)

Impact of Seat Inclination and Misalignment on Airborne Pollutant Transport in a Single-Aisle Aircraft Cabin

  • Tengfei (Tim) Zhang,
  • Mingqi Fan,
  • Sumei Liu

DOI
https://doi.org/10.3390/app12094538
Journal volume & issue
Vol. 12, no. 9
p. 4538

Abstract

Read online

Airborne pollutant transport in an aircraft cabin is greatly affected by the created airflow. The seat layout can impact the flow and thus the pollutant transport. Most studies have adopted symmetric upright seats for simplicity. The influence of seat inclination and seat misalignment on airflow and pollutant transport is still unclear. This investigation adopted a validated computational fluid dynamics (CFD) method to study the airflow and airborne pollutant distribution in a single-aisle cabin with seven rows of seats. The pollutant was assumed to be released from a passenger seated in the middle of three adjacent seats. A total of five different seat layouts were considered, including all of the upright seats, the inclination of three adjacent seats, the inclination of all of the seats in half a cabin, the inclination of all of the seats in a whole cabin, and the misalignment seat rows across the aisle. The flows in both the cross and longitudinal sections were compared. The pollutant concentrations in the respiratory zone of the passengers in different seats were adopted to evaluate the cross-contamination. The results revealed that the symmetric seat layout aids to circumscribe the released pollutant in a small region and reduces the cross-contamination either by maintaining the upright seats or inclining all of the seats. Contrarily, any inclination of seats or a misalignment of seat rows should be avoided during the pandemic since an asymmetric seat layout would generate asymmetric flow and strengthen the spreading of pollutants.

Keywords