Photonics (Oct 2024)
Inverse Design of Reflectionless Thin-Film Multilayers with Optical Absorption Utilizing Tandem Neural Network
Abstract
The traditional approach to optical design faces limitations as photonic devices grow increasingly complex, requiring advanced functionalities. Recently, machine learning algorithms have gained significant interest for extracting structural designs from customized wavelength spectra, surpassing traditional simulation methods known for their time-consuming nature and resource-demanding computational requirements. This study focuses on the inverse design of a reflectionless multilayer thin-film structure across a specific wavelength region, utilizing a tandem neural network (TNN) approach. The method effectively addresses the non-uniqueness problem in training inverse neural networks. Data generation via the transfer matrix method (TMM) involves simulating the optical behavior of a multilayer structure comprising alternating thin films of silicon dioxide (SiO2) and silicon (Si). This innovative design considers both reflection and absorption properties to achieve near-zero reflection. We aimed to manipulate the structure’s reflectivity by implementing low-index and high-index layers along with Si absorption layers to attain specific optical properties. Our TNN demonstrated an MSE accuracy of less than 0.0005 and a maximum loss of 0.00781 for predicting the desired spectrum range, offering advanced capabilities for forecasting arbitrary spectra. This approach provides insights into designing multilayer thin-film structures with near-zero reflection and highlights the potential for controlling absorption materials to enhance optical performance.
Keywords