Crystals (Feb 2018)
Specific Structural Disorder in an Anion Layer and Its Influence on Conducting Properties of New Crystals of the (BEDT-TTF)4A+[M3+(ox)3]G Family, Where G Is 2-Halopyridine; M Is Cr, Ga; A+ Is [K0.8(H3O)0.2]+
Abstract
New crystals (1–4) of organic conductors based on the radical cation salts of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with paramagnetic and diamagnetic tris(oxalato)metallate anions {A+[M3+(ox)3]3−G}2−, where M is Cr, Ga; G is 2-chloropyridine, 2-bromopyridine; and A+ is [K0.8(H3O)0.2]+ have been prepared and their crystal structure and transport properties were studied. All crystals belong to the monoclinic group of the (BEDT-TTF)4A+[M3+(ox)3]G family with β″-packing type of conducting BEDT-TTF layers. In contrast to the known superconducting crystals with M3+ = Fe3+ and G = 2-chloro- or 2-bromopyridine (Tc = 4.0–4.3 K), crystals with Cr3+ and Ga3+ ions exhibit metallic properties down to 0.5 K without superconducting transition. Upon cooling these crystals, the incommensurate superstructure appears, which has never been observed before in the numerous β″-salts of the family. In addition, orthorhombic (sp. group Pbca) semiconducting crystals α″-(BEDT-TTF)5[Ga(ox)3]·3.4·H2O·0.6 EtOH (5) were obtained. It is a new compound in the family of BEDT-TTF crystals with tris(oxalato)metallate anions.
Keywords