Journal of Integrative Agriculture (Jul 2016)
Comprehensive evaluation of tolerance to alkali stress by 17 genotypes of apple rootstocks
Abstract
Alkaline soils have a great influence on apple production in Northern China. Therefore, comprehensive evaluations of tolerance to such stress are important when selecting the most suitable apple rootstocks. We used hydroponics culturing to test 17 genotypes of apple rootstocks after treatment with 1:1 Na2CO3 and NaHCO3. When compared with the normally grown controls, stressed plants produced fewer new leaves, and had shorter roots and shoots and lower fresh and dry weights after 15 d of exposure to alkaline conditions. Their root/shoot ratios were also reduced, indicating that the roots had been severely damaged. For all stressed rootstocks, electrolyte leakage (EL) and the concentration of malondialdehyde (MDA) increased while levels of chlorophyll decreased. Changes in root activity (up or down), as well as the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were rootstock-dependent, possibly reflecting their differences in alkali tolerance. Using alkali injury index (AI), adversity resistance coefficients (ARC), cluster analysis, and evaluation of their physiological responses, we classified these 17 genotypes into three groups: (1) high tolerance: Hubeihaitang, Wushanbianyehaitang, Laoshanhaitang Ls2, Xiaojinbianyehaitang, and Fupingqiuzi; (2) moderate tolerance: Pingyitiancha, Laoshanhaitang Ls3, Hubeihaitang A1, Deqinhaitang, Balenghaitang, Maoshandingzi, Shandingzi, and Xinjiangyepingguo; or (3) low tolerance: Pingdinghaitang, Hongsanyehaitang, Xiaojinhaitang, and Sanyehaitang. These results will significantly contribute to the selection of the most suitable materials for rootstocks with desired levels of tolerance to alkali stress.