Energies (Nov 2024)

Evaluation of Organic Waste Long-Term Effects on Cellulose, Hemicellulose and Lignin Content in Energy Grass Species Grown in East-Central Poland

  • Elżbieta Malinowska,
  • Stanislav Torma

DOI
https://doi.org/10.3390/en17225598
Journal volume & issue
Vol. 17, no. 22
p. 5598

Abstract

Read online

Biomass can be used for electricity generation, especially in developing countries, but also in developed ones, where the utilization of renewable energy sources is being integrated into a sustainable economy. There are considerable differences in the scale of biomass use and in the technology of its processing. One of the most important sources of biofuel is the biomass of grass. This research aimed to determine the long-term effects of organic fertilizers on cellulose, hemicellulose, and lignin content in the biomass of three grass species: giant miscanthus (Miscanthus × giganteus), prairie cordgrass (Spartina pectinata), and switchgrass (Panicum virgatum L.) in the first three years of growth. The experiment was established in four replications on microplots of 2 m2 in April 2018. Before planting grass rhizomes, municipal sewage sludge (SS) and spent mushroom substrate (SMS) were introduced into the soil in various combinations. Biomass is harvested in December every year. The content of structural polysaccharides in the grass species statistically significantly varied in response to organic waste. Compared to other fertilizer combinations, SS application increased the content of cellulose in the biomass of Miscanthus giganteus (43.66% of DM) and Spartina pectinata (37.69% of DM) and hemicellulose in Spartina pectinata (27.80% of DM) and Panicum virgatum (23.64% of DM). Of the three species of grass, the chemical composition of Miscanthus giganteus cell walls was the most favorable for biofuel production, with the most cellulose and hemicellulose and the least lignin compared to other grass species. The content of lignin in the biomass of Miscanthus × giganteus and Spartina pectinata was the greatest on the plot with SMS and amounted to 7.79% of DM and 12.32% of DM, respectively. In the case of Panicum virgatum, the average content of lignin was similar across all fertilized plots, with 15.42% DM.

Keywords