Journal of Dairy Science (Oct 2023)
Effects of dietary inclusion of 3 Nordic brown macroalgae on enteric methane emission and productivity of dairy cows
Abstract
ABSTRACT: Macroalgae are receiving increased attention as antimethanogenic feed additives for cattle, but most in vivo studies are limited to investigating effects of the red macroalgae Asparagopsis spp. Hence, this study aimed to investigate the CH4 mitigating potential of 3 brown macroalgae from the Northern Hemisphere when fed to dairy cows, and to study the effects on feed intake, milk production, feed digestibility, and animal health indicators. The experiment was conducted as a 4 × 4 Latin square design using 4 lactating rumen, duodenal, and ileal cannulated Danish Holstein dairy cows. The cows were fed a total mixed ration (TMR) without any macroalgae or the same TMR diluted with, on a dry matter basis, either 4% ensiled Saccharina latissima, 4% Ascophyllum nodosum (NOD), or 2% Sargassum muticum (MUT). Each period consisted of 14 d of adaptation, 3 d of digesta and blood sampling, and 4 d of gas exchange measurements using respiration chambers. Milk yield and dry matter intake (DMI) were recorded daily. Blood was sampled on d 13 and 16 and analyzed for health status indicators. None of the 3 species affected the CH4 emission. Moreover, milk yield and DMI were also unaffected. Total-tract digestibility of crude protein was significantly lower for NOD compared with other diets, and additionally, the NOD diet also tended to reduce total-tract digestibility of neutral detergent fiber compared with MUT. Blood biomarkers did not indicate negative effects of the dietary inclusion of macroalgae on cow health. In conclusion, none of the 3 brown macroalgae reduced CH4 emission and did not affect DMI and milk production of dairy cows, whereas negative effects on the digestibility of nutrients were observed when A. nodosum was added. None of the diets would be allowed to be fed in commercial dairy herds due to high contents of iodine, cadmium, and arsenic.