Health Technology Assessment (Jan 1997)
Screening for fragile X syndrome.
Abstract
: BACKGROUND AND AIM OF REVIEW. In 1991, the gene responsible for fragile X syndrome, a common cause of learning disability, was discovered. As a result, diagnosis of the disorder has improved and its molecular genetics are now understood. This report seems to provide the information needed to decide whether to use DNA testing to screen for the disorder. HOW THE RESEARCH WAS CONDUCTED. A literature search of electronic reference databases of published and 'grey' literature was undertaken together with hand searching of the most recent publications. RESEARCH FINDINGS. NATURAL HISTORY. Physical characteristics of fragile X syndrome include facial atypia, joint laxity and, in boys, macro-orchidism. Most affected males have moderate-to-severe learning disabilities with IQs under 50 whereas most females have borderline IQs of 70-85. Behavioural problems are similar to those seen with autism and attention-deficit disorders. Although fragile X syndrome is not curable there are a number of medical, educational, psychological and social interventions that can improve the symptoms. About 6% of those with learning disabilities tested in institutions have fragile X syndrome. Population prevalence figures are 1 in 4000 in males and 1 in 8000 in females. GENETICS. The disorder is caused by a mutation in a gene on the X chromosome which includes a trinucleotide repeat sequence. The mutation is characterized by hyper-expansion of the repeat sequence leading to down-regulation of the gene. In males an allele with repeat size in excess of 200, termed a full mutation (FM), is always associated with the affected phenotype, whereas in females only half are affected. Individuals with alleles having repeat size in the range 55-199 are unaffected but in females the sequence is heritably unstable so that it is at high risk of expansion to an FM in her offspring. This allele is known as a pre-mutation (PM) to contrast it with the FM found in the affected individual. No spontaneous expansions directly from a normal allele to an FM have been observed. SCREENING STRATEGIES. The principal aims of screenng for fragile X syndrome is to reduce the birth prevalence of the disorder, by prenatal diagnosis and selective termination of pregnancy, or by reducing the number of pregnancies in women who have the FM or PM alleles. Possible screening strategies are: routine antenatal testing of apparently low risk pregnancies, preconceptual testing of young women, and systematic testing in affected families ('cascade' screening). A secondary aim is to bring forward the diagnosis of affected individuals so that they might benefit from early treatment. Active paediatric screening and neonatal screening could achieve this but there is no direct evidence of any great benefit from early diagnosis. SCREENING TESTS. Cytogenetic methods are unsuitable for screening purposes. Southern blotting of genomic DNA can be used but is inaccurate in measuring the size of small PMs, there is a long laboratory turnaround time, and it is relatively expensive. The best protocol is to amplify the DNA using polymerase chain reaction on all samples, and when there is a possible failure to amplify, a Southern blot.(ABSTRACT TRUNCATED)