Fluids (Feb 2023)
Understanding Atmospheric Convection Using Large Eddy Simulation
Abstract
Cloud formation is based on the fundamental principle of atmospheric convection, which involves the vertical transport of heat and moisture into an unstable environment. Convective transfer of moisture and heat in the form of turbulent fluxes over the Bay of Bengal (BoB) has not been explored much and is not resolved in global and regional climate models (GCMs and RCMs) due to the coarser grid resolutions used. Therefore, the present study is an attempt to understand the convection phenomenon over the BoB using a high-resolution cloud-resolving large eddy simulation. Due to the lack of observational data over the BoB, initial and boundary conditions were generated using reanalysis data. We found that the LES successfully captured the cloud formation and convection phenomenon. The turbulence in the convection was analyzed by using Reynolds averaging to obtain variances and covariances. The presence of turbulence over the region was observed. The cloud characteristics were verified by conditionally averaging the output fields. The present study paves a pathway to perform various simulations at different atmospheric conditions over the region in order to create a library of high-resolution simulations.
Keywords