Ecotoxicology and Environmental Safety (Jun 2022)

Polystyrene microplastics induce mitochondrial damage in mouse GC-2 cells

  • Tao Liu,
  • Baolian Hou,
  • Zhiping Wang,
  • Yanli Yang

Journal volume & issue
Vol. 237
p. 113520

Abstract

Read online

Microplastics are widely distributed, such as oceans, rivers and the atmosphere, with many opportunities for human exposure and potential health risks. Polystyrene microplastic (PS-MPS) exposure has been found to cause sperm damage to mice; however, the mechanism by which this happens remains unclear. Here, GC-2 cells, a mouse spermatocyte line, were exposed to 5 µm PS-MPS to investigate mitochondrial damage. The results showed that 5 µm PS-MPS decreased ATP content, reduced the mitochondrial membrane potential, damaged the integrity of the mitochondrial genome, and caused an imbalance of homoeostasis between mitochondrial division and fusion. The mitochondrial PINK1/Parkin autophagy pathway was activated. Time-series analysis revealed that PS-MPS damaged the mitochondrial structure through cellular oxidative stress, and mitochondrial function was maintained to some extent after PS-MPS damage. This study revealed the mitochondrial toxicity of polystyrene microplastics, thus providing a basis for understanding the causes of sperm damage by polystyrene microplastics.

Keywords