Remote Sensing (Aug 2024)

NRCS Recalibration and Wind Speed Retrieval for SWOT KaRIn Radar Data

  • Lin Ren,
  • Xiao Dong,
  • Limin Cui,
  • Jingsong Yang,
  • Yi Zhang,
  • Peng Chen,
  • Gang Zheng,
  • Lizhang Zhou

DOI
https://doi.org/10.3390/rs16163103
Journal volume & issue
Vol. 16, no. 16
p. 3103

Abstract

Read online

In this study, wind speed sensitivity and calibration bias were first determined for Surface Water and Ocean Topography (SWOT) satellite Ka-band Radar Interferometer (KaRIn) Normalized Radar Backscatter Cross Section (NRCS) data at VV and HH polarizations. Here, the calibration bias was estimated by comparing the KaRIn NRCS with collocated simulations from a model developed using Global Precipitation Measurement (GPM) satellite Dual-frequency Precipitation Radar (DPR) data. To recalibrate the bias, the correlation coefficient between the KaRIn data and the simulations was estimated, and the data with the corresponding top 10% correlation coefficients were used to estimate the recalibration coefficients. After recalibration, a Ka-band NRCS model was developed from the KaRIn data to retrieve ocean surface wind speeds. Finally, wind speed retrievals were evaluated using the collocated European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis winds, Haiyang-2C scatterometer (HY2C-SCAT) winds and National Data Buoy Center (NDBC) and Tropical Atmosphere Ocean (TAO) buoy winds. Evaluation results show that the Root Mean Square Error (RMSE) at both polarizations is less than 1.52 m/s, 1.34 m/s and 1.57 m/s, respectively, when compared to ECMWF, HY2C-SCAT and buoy collocated winds. Moreover, both the bias and RMSE were constant with the incidence angles and polarizations. This indicates that the winds from the SWOT KaRIn data are capable of correcting the sea state bias for sea surface height products.

Keywords