Nanomaterials (Nov 2024)

Versatile Porphyrin Arrangements for Photodynamic Therapy—A Review

  • Arleta Glowacka-Sobotta,
  • Beata Czarczynska-Goslinska,
  • Daniel Ziental,
  • Marcin Wysocki,
  • Maciej Michalak,
  • Emre Güzel,
  • Lukasz Sobotta

DOI
https://doi.org/10.3390/nano14231879
Journal volume & issue
Vol. 14, no. 23
p. 1879

Abstract

Read online

Nanotechnology is an emerging field that involves the development of nanoscale particles, their fabrication methods, and potential applications. From nanosized inorganic particles to biopolymers, the variety of nanoparticles is unstoppably growing, offering huge opportunities for drug delivery. Various nanoformulations, such as nanoparticles, nanocomposites, and nanoemulsions, have been developed to enhance drug stability, solubility, and tissue penetration. Moreover, nanocarriers can be specifically engineered to target diseased cells or release the drug in a controllable manner, minimizing damage to surrounding healthy tissues and reducing side effects. This review focuses on the combinations between porphyrin derivatives and nanocarriers applied in photodynamic therapy (PDT). PDT has emerged as a significant advance in medicine, offering a low-invasive method for managing infections, the treatment of tumors, and various dermatoses. The therapy relies on the activation of a photosensitizer by light, which results in the generation of reactive oxygen species. Despite their favorable properties, porphyrins reveal non-specific distribution within the body. Nanotechnology has the capability to enhance the PS delivery and its activation. This review explores the potential improvements that are provided by the use of nanotechnology in the PDT field.

Keywords