iForest - Biogeosciences and Forestry (Dec 2023)
How biomass and other tree architectural characteristics relate to the structural complexity of a beech-pine forest
Abstract
The provision of ecosystem functions and services in forests is closely linked to the presence of complex structures. One such service is the ability to store carbon. It has recently become possible to quantify both structural complexity and biomass of forests (as proxy of carbon storage) using light detection and ranging (LiDAR). The objective of this study was to analyze how the community-level complexity of a forest stand relates to structural characteristics, and biomass in particular, of the trees comprising the stand. To do so, we virtually assembled 30 forests (3D models), all representing different versions of a beech-pine forest in Germany, based on real world 3D LiDAR scan data of all trees in the forest. At the individual tree level, various structural characteristics, including wood volume and biomass were derived using both voxel models and quantitative structure models (QSM). Basal area and biomass, as well as to a lower degree also the mean height of maximum crown projection area, significantly affected the structural complexity at stand level. Among the different forest models, the variation in complexity could best be described using a combination of basal area, mean height of the maximum crown projection area, and the coefficient of variation of total tree height. Biomass alone explained 54% of the variation in stand-level complexity, while the multivariate model based on measures addressing the amount and vertical distribution of plant material explained 86% of the variability in complexity. Using a laser-based and holistic approach of assessing the structural complexity, namely the box-dimension, allowed identifying key structural attributes that promote aboveground structural complexity of the forest studied here.
Keywords