Buildings (Jun 2023)
Numerical Analysis on the Behavior of Floating Geogrid-Encased Stone Column Improved Foundation
Abstract
The ordinary (OSC) and geosynthetic-encased stone column (ESC) with different bearing strata significantly influenced its behavior. The paper established seven models for studying the behavior of floating stone columns using the finite difference method (FDM). The effect of geogrid and column length on the load-settlement behavior, bulging deformation, failure mode, and load transfer coefficient were also analyzed based on proposal models. The results showed that the bearing capacity of F-OSCs and F-ESCs increased with the increase in column and encasement length, respectively, and a critical length (i.e., 4D, where D was the column diameter) was found in settlement improvement. The bulging deformation was significant in F-OSCs and was observed at the top of a long column and the full length of a short column. The geogrid encasement could constrain the OSC to decrease the bulging deformation. The failure mode in F-OSCs was mainly a punching failure with bulging deformation for a short column (e.g., less than 4D), and was relative to the vertical pressure for a long column. The failure mode in F-ESCs was a punching failure, and the punching degree increased with an increase in encasement length. The load transfer coefficient of F-OSCs or F-ESCs was relatively stable as the column length increased to a critical value (e.g., 4D) or the encasement length increased to a critical value (e.g., 4D).
Keywords