Microbial Cell Factories (Sep 2022)
Development of an industrial yeast strain for efficient production of 2,3-butanediol
Abstract
Abstract As part of the transition from a fossil resources-based economy to a bio-based economy, the production of platform chemicals by microbial cell factories has gained strong interest. 2,3-butanediol (2,3-BDO) has various industrial applications, but its production by microbial fermentation poses multiple challenges. We have engineered the bacterial 2,3-BDO synthesis pathway, composed of AlsS, AlsD and BdhA, in a pdc-negative version of an industrial Saccharomyces cerevisiae yeast strain. The high concentration of glycerol caused by the excess NADH produced in the pathway from glucose to 2,3-BDO was eliminated by overexpression of NoxE and also in a novel way by combined overexpression of NDE1, encoding mitochondrial external NADH dehydrogenase, and AOX1, encoding a heterologous alternative oxidase expressed inside the mitochondria. This was combined with strong downregulation of GPD1 and deletion of GPD2, to minimize glycerol production while maintaining osmotolerance. The HGS50 strain produced a 2,3-BDO titer of 121.04 g/L from 250 g/L glucose, the highest ever reported in batch fermentation, with a productivity of 1.57 g/L.h (0.08 g/L.h per gCDW) and a yield of 0.48 g/g glucose or with 96% the closest to the maximum theoretical yield ever reported. Expression of Lactococcus lactis NoxE, encoding a water-forming NADH oxidase, combined with similar genetic modifications, as well as expression of Candida albicans STL1, also minimized glycerol production while maintaining high osmotolerance. The HGS37 strain produced 130.64 g/L 2,3-BDO from 280 g/L glucose, with productivity of 1.58 g/L.h (0.11 g/L.h per gCDW). Both strains reach combined performance criteria adequate for industrial implementation.
Keywords