Sensors (Sep 2020)
Reliability and Repeatability Analysis of Indices to Measure Gait Deterioration in MS Patients during Prolonged Walking
Abstract
Gait deterioration caused by prolonged walking represents one of the main consequences of multiple sclerosis (MS). This study aims at proposing quantitative indices to measure the gait deterioration effects. The experimental protocol consisted in a 6-min walking test and it involved nine patients with MS and twenty-six healthy subjects. Pathology severity was assessed through the Expanded Disability Status Scale. Seven inertial units were used to gather lower limb kinematics. Gait variability and asymmetry were assessed by coefficient of variation (CoV) and symmetry index (SI), respectively. The evolution of ROM (range of motion), CoV, and SI was computed analyzing data divided into six 60-s subgroups. Maximum difference among subgroups and the difference between the first minute and the remaining five were computed. The indices were analyzed for intra- and inter-day reliability and repeatability. Correlation with clinical scores was also evaluated. Good to excellent reliability was found for all indices. The computed standard deviations allowed us to affirm the good repeatability of the indices. The outcomes suggested walking-related fatigue leads to an always more variable kinematics in MS, in terms of changes in ROM, increase of variability and asymmetry. The hip asymmetry strongly correlated with the clinical disability.
Keywords