Materials (Sep 2021)

A High-Similarity Modeling Method for Low-Porosity Porous Material and Its Application in Bearing Cage Self-Lubrication Simulation

  • Jiannan Sun,
  • Ke Yan,
  • Yongsheng Zhu,
  • Jun Hong

DOI
https://doi.org/10.3390/ma14185449
Journal volume & issue
Vol. 14, no. 18
p. 5449

Abstract

Read online

The porous oil-containing cage achieves the storage, spillage, and suction of lubricating oil by its micro-pore structure, thus ensuring the self-lubricating performance of the bearing. Carrying out fast and accurate modeling of the cage microscopic pore structure is the key to the analysis of the self-lubricating mechanism of bearings. In response to the issues where current modeling methods of porous materials have a low similarity of pore distribution, morphology, structure, and size characteristics, and the transition of pore surfaces is sharp, this paper proposed a modeling method of a highly similar micro-pore structure based on the idea of median filtering, the quartet structure generation set (QSGS), and the slice method. By extracting and analyzing the pore characteristics of the porous model and comparing them with the experimental results of CT scanning, the advantages of the modeling method in terms of morphology and pore connectivity were verified. Finally, by carrying out simulation analysis of the centrifugal force of oil splashing and capillary oil absorption on the constructed model by combining the parameters of porous structures such as porosity and tortuosity, the advantages of the modeling method in the construction of the porous model and multi-physical field analysis were further verified.

Keywords