Journal of Immunology Research (Jan 2019)

IL-21 Expands HIV-1-Specific CD8+ T Memory Stem Cells to Suppress HIV-1 Replication In Vitro

  • Kang Wu,
  • Shaoying Zhang,
  • Xu Zhang,
  • Xinghua Li,
  • Zhongsi Hong,
  • Fei Yu,
  • Bingfeng Liu,
  • Ting Pan,
  • Zhaofeng Huang,
  • Xiao-ping Tang,
  • Weiping Cai,
  • Jinyu Xia,
  • Xuefeng Li,
  • Hui Zhang,
  • Yiwen Zhang,
  • Linghua Li

DOI
https://doi.org/10.1155/2019/1801560
Journal volume & issue
Vol. 2019

Abstract

Read online

Due to the existence of viral reservoirs, the rebound of human immunodeficiency virus type 1 (HIV-1) viremia can occur within weeks after discontinuing combined antiretroviral therapy. Immunotherapy could potentially be applied to eradicate reactivated HIV-1 in latently infected CD4+ T lymphocytes. Although the existence of HIV-1-specific CD8+ T memory stem cells (TSCMs) is well established, there are currently no reports regarding methods using CD8+ TSCMs to treat HIV-1 infection. In this study, we quantified peripheral blood antigen-specific CD8+ TSCMs and then expanded HIV-1-specific TSCMs that targeted optimal antigen epitopes (SL9, IL9, and TL9) in the presence of interleukin- (IL-) 21 or IL-15. The suppressive capacity of the expanded CD8+ TSCMs on HIV-1 production was measured by assessing cell-associated viral RNA and performing viral outgrowth assays. We found that the number of unmutated TL9-specific CD8+ TSCMs positively correlated with the abundance of CD4+ T cells and that the expression of IFN-γ was higher in TL9-specific CD8+ TSCMs than that in non-TL9-specific CD8+ TSCMs. Moreover, the antiviral capacities of IL-21-stimulated CD8+ TSCMs exceeded those of conventional CD8+ memory T cells and IL-15-stimulated CD8+ TSCMs. Thus, we demonstrated that IL-21 could efficiently expand HIV-1-specific CD8+ TSCMs to suppress HIV-1 replication. Our study provides new insight into the function of IL-21 in the in vitro suppression of HIV-1 replication.