Atmospheric Measurement Techniques (Sep 2020)
A new Orbiting Carbon Observatory 2 cloud flagging method and rapid retrieval of marine boundary layer cloud properties
Abstract
The Orbiting Carbon Observatory 2 (OCO-2) carries a hyperspectral A-band sensor that can obtain information about cloud geometric thickness (H). The OCO2CLD-LIDAR-AUX product retrieved H with the aid of collocated CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data to identify suitable clouds and provide a priori cloud top pressure (Ptop). This collocation is no longer possible, since CALIPSO's coordination flying with OCO-2 has ended, so here we introduce a new cloud flagging and a priori assignment using only OCO-2 data, restricted to ocean footprints where solar zenith angle <45∘. Firstly, a multi-layer perceptron network was trained to identify liquid clouds over the ocean with sufficient optical depth (τ>1) for a valid retrieval, and agreement with MODIS–CALIPSO (Moderate Resolution Imaging Spectroradiometer) is 90.0 %. Secondly, we developed a lookup table to simultaneously retrieve cloud τ, effective radius (re) and Ptop from A-band and CO2 band radiances, with the intention that these will act as the a priori state estimate in a future retrieval. Median Ptop difference vs. CALIPSO is 12 hPa with an inter-decile range of [-11,87]hPa, substantially better than the MODIS–CALIPSO range of [-83,81]hPa. The MODIS–OCO-2 τ difference is 0.8[-3.8,6.9], and re is -0.3[-2.8,2.1]µm. The τ difference is due to optically thick and horizontally heterogeneous cloud scenes. As well as an improved passive Ptop retrieval, this a priori information will allow for a purely OCO-2-based Bayesian retrieval of cloud droplet number concentration (Nd). Finally, our cloud flagging procedure may also be useful for future partial-column above-cloud CO2 abundance retrievals.