Brain Research Bulletin (Jul 2024)

Acorus tatarinowii oils exert protective effects on microglia-mediated inflammatory injury via restoring gut microbiota composition in experimental stroke rats

  • Yueyue Huang,
  • Yongyi Li,
  • Danni Guan,
  • Yaru Pan,
  • Chao Yang,
  • Huina Liu,
  • Chaoyan Chen,
  • Weitao Chen,
  • Jinman Liu,
  • Ting Wan,
  • Lixing Zhuang,
  • Qi Wang,
  • Yifan Zhang

Journal volume & issue
Vol. 213
p. 110990

Abstract

Read online

Growing evidence has demonstrated that gut microbiota could be developed as a therapeutic target due to its contribution to microglia activation in the pathological process of ischemic stroke. Acorus tatarinowii oils (AT oils), which is considered as the active fraction of a traditional Chinese herbal medicine Acorus tatarinowii, exerts various bioactivities and prebiotic effects. However, it remains unclear that the effect of AT oils on inflammatory response after ischemic stroke and whether its underlying mechanism is associated to gut microbiota and the intestinal barrier. In the current study, we aim to investigate the anti-microglial neuroinflammation mechanism of AT oils in a middle cerebral artery occlusion model of ischemic stroke. The compositions of AT oils were identified by GC-MS. Our results demonstrated that AT oils could effectively relieve cerebral infarction, inhibit neuronal apoptosis, degrade the release of pro-inflammatory factors (TNF-α, IL-17, IL-6 and IFN-γ), and mediate the polarization of microglia. Moreover, AT oils restored the composition and the balance of gut microbiota in stroke rats, and reduced abundance of opportunistic genera including Verrucomicrobia, Akkermansia and Tenericutes, as well as increased beneficial bacteria abundance such as Tenericutes and Prevotella_copri. To investigate the role of gut microbiota on AT oils against ischemic stroke, we conducted the fecal microbiota transplantation (FMT) experiments with gut microbiota consumption, which suggested that the depletion of gut microbiota took away the protective effect of AT oils, confirming the importance of gut microbiota in the protective effect of AT oils on ischemic stroke. FMT experiments have demonstrated that AT oils preserved the gut permeability and blood-brain barrier, as well as mediated the microglial phenotype under the intervention of gut microbiota. In summary, AT oils could efficaciously moderate neuronal damage and intervene microglial phenotype by reversing gut microbiota disorder in ischemic stroke rats.

Keywords