Scientific Reports (Apr 2024)
Neem biomass derived carbon quantum dots synthesized via one step ultrasonification method for ecofriendly methylene blue dye removal
Abstract
Abstract This article presents a one-step ultrasonication technique for generating biomass carbon dots (BCDs) from neem bark (Azadirachta indica) powder. The BCDs were characterized using modern techniques such as UV–Vis, FTIR, Raman, XRD, HRTEM, FESEM, EDAX, and Zeta potential analyses. Unlike traditional nanocomposite bed systems, this study utilized BCDs as a liquid-phase adsorbent for the regenerative adsorption of the environmentally harmful dye, methylene blue (MB), through an in-situ precipitation reaction. This involved the formation of BCDs-MB adduct via an electrostatic mechanism. The adsorption capacity and percentage of removal were remarkable at 605 mg g–1 and 64.7% respectively, exceeding various solid-based adsorption methods in the literature. The Langmuir isotherm and pseudo-second-order kinetics model provided an excellent fit for this system. The calculated thermodynamic parameter, Gibbs free energy change (ΔG) was negative, indicating a spontaneous, exothermic, and physisorption-based mechanism. The regenerative capacity of our system was further demonstrated by successfully extracting and recovering the MB dye (64%) using ethyl alcohol as the solvent. This method provides an efficient means of recovering valuable cationic organic dye compounds from contaminated environments.
Keywords