Uludağ University Journal of The Faculty of Engineering (Dec 2023)
THE EXPLOITATION OF TITANIUM DIOXIDE NANOPARTICLES FOR IMPROVING THE PERFORMANCE AND EMISSIONS OF BIOFUEL-DIESEL BLEND-FUELLED STATIONARY DIESEL ENGINE
Abstract
In this research, the potential effects of titanium dioxide (TiO2) nanoparticles on improving a stationary diesel engine characteristic fuelled with a biofuel mixture-diesel blend (B25: 25% vol. biofuel mixture containing biodiesel, waste cooking oil and ethanol + 75% vol. diesel) are experimentally investigated. TiO2 nanoparticles are dispersed in B25 fuel at 50, 100, and 150 ppm concentrations. Subsequently, they are tested in a stationary research diesel engine at a rotational speed of 1500 rpm and specific loads. Nanoparticles enhance combustion, offering increased cylinder gas pressure, net heat release rate, and reduced ignition delay period and combustion duration. The engine performance is enhanced more with increasing nanoparticle concentration. TiO2 nanoparticles with a 150 ppm rate reduce brake-specific fuel consumption by 3.21% and increase the brake effective efficiency by 3.67%, on average, compared to B25 fuel without nanoparticles. CO emission and smoke opacity are reduced by up to 31.89% and 24.56% with TiO2 nanoparticles. However, under the same operating conditions, NO emission increases to 30.58% compared to sole B25. Nevertheless, the NO emission of nanofuels is still less than that of diesel fuel. This study's results indicate that using TiO2 nanoparticles as a nano fuel additive can enhance the stationary engine's operation fueled with the biofuel mixture-diesel blend.
Keywords