Archives of Biological Sciences (Jan 2019)
NANOG improves type I collagen expression in human fetal scleral fibroblasts
Abstract
Human fetal scleral fibroblasts (HFSFs) are components of the sclera and play important roles in its structure and function. In myopia, scleral remodeling reduces collagen fibers and the sclera begins to thin. NANOG is a key transcription factor essential for pluripotent and self-renewing phenotypes of undifferentiated embryonic stem cells. To determine whether NANOG improves human fetal scleral fibroblast quality and the underlying mechanisms in these cells, we established stable NANOG-overexpressing HFSFs. We studied type I collagen (COL1A 1) and Rho-associated coiled-coil protein kinase 1 (ROCK1) expression in transfected cells. We also investigated POU5F1, SOX2, KLF4, MYC and SALL4 expression in NANOG stably-overexpressed fibroblasts. Our data show that NANOG expression increased proliferation rates in fibroblasts. When compared to controls, expression of COL1A 1 in transfected fibroblasts was increased and the expression of ROCK1 was decreased. Similarly, the expression of POU5F1, SOX2 and KLF4 was downregulated, the expression of MYC was upregulated and there was no significant change in the expression of SALL4 in transfected fibroblasts. Our results suggest that in fibroblasts, NANOG regulates ROCK1 expression and improves COL1A 1 expression to delay scleral remodeling.
Keywords