EPJ Web of Conferences (Jan 2024)
Sequential fission and the influence of 208Pb closed shells on the dynamics of superheavy element synthesis reactions
Abstract
Measured binary quasifission mass spectra in reactions with actinide nuclides show a large peak in yield near the doubly-magic 208Pb, generally attributed to enhanced binding energy causing a valley in the potential energy surface, which attracts quasifission trajectories. Measurements of binary quasifission mass spectra and cross-sections have been made for reactions of 50Ti with actinide nuclides from 232Th to 249Cf. Cross-sections have also been deduced for sequential fission (a projectile-like nucleus and two fragments from fission of the complementary target-like nucleus). Binary cross-sections fall from 70% of calculated capture cross-sections for 232Th to only 40% for 249Cf, with a compensating increase in sequential fission cross-sections. The data are consistent with the peak in yield near 208Pb originating largely from sequential fission of heavier fragments produced in more mass-asymmetric primary quasifission events. These are increasingly suppressed as the heavy quasifission fragment mass increases above 208Pb. The important role of sequential fission calls for re-interpretation of quasifission observables and dynamics in superheavy element synthesis reactions.