Horticulturae (Oct 2020)

Impact of Different Growing Substrates on Growth, Yield and Cannabinoid Content of Two <em>Cannabis sativa</em> L. Genotypes in a Pot Culture

  • Lisa Burgel,
  • Jens Hartung,
  • Simone Graeff-Hönninger

DOI
https://doi.org/10.3390/horticulturae6040062
Journal volume & issue
Vol. 6, no. 4
p. 62

Abstract

Read online

The impacts of different growing substrate compositions, consisting of peat (PM), peat substituted with 30% green fibre (G30) and coco coir fibre (CC) growth media, were investigated in regard to the plant height, biomass and floral yield, biomass nitrogen (N) content, root growth, and cannabidiol content (CBD/A) of two phytocannabinoid-rich cannabis genotypes in an indoor pot cultivation system. Genotypes and substrate treatment combinations were randomly allocated to 36 plants according to a Latin square design. The results showed a higher total plant height for PM (39.96 cm), followed by G30 (35.28 cm), and the lowest in CC (31.54 cm). The N content of leaves indicated the highest values for plants grown in G30 (52.24 g kg DW−1), followed by PM (46.75 g kg DW−1) and a significantly lower content for CC (37.00 g kg DW−1). Root length density (RLD) increased by 40% (PM) and 50% (G30), compared to CC treatments, with no significant differences in root dry weight. Both genotypes, Kanada (KAN) and 0.2x, reacted in a genotype-specific manner. KAN indicated a reduced floral yield of plants grown in G30 (4.94 g plant−1) and CC (3.84 g plant−1) compared to PM (8.56 g plant−1). 0.2x indicated stable high floral yields of 9.19 g plant−1 (G30) to 7.90 g plant−1 (CC). Leaf DW increased in PM (5.78 g plant−1) and G30 (5.66 g plant−1) compared to CC (3.30 g plant−1), while CBD/A content remained constant. Due to a higher biomass yield, the CBD/A yield of flowers (549.66 mg plant−1) and leaves (224.16 mg plant−1) revealed 0.2x as an interesting genotype for indoor pot cultivation in a peat-based substrate substituted with 30% green fibres. Overall, the demand for organic green fibres to partly replace fractionated peat showed a genotype-specific option for a homogeneous plant development, with comparable high biomass yields and stable cannabinoid contents compared to a peat containing standard substrate.

Keywords