Remote Sensing (Mar 2024)

Altimeter Calibrations in the Preliminary Four Years’ Operation of Wanshan Calibration Site

  • Wanlin Zhai,
  • Jianhua Zhu,
  • Hailong Peng,
  • Chuntao Chen,
  • Longhao Yan,
  • He Wang,
  • Xiaoqi Huang,
  • Wu Zhou,
  • Hai Guo,
  • Yufei Zhang

DOI
https://doi.org/10.3390/rs16061087
Journal volume & issue
Vol. 16, no. 6
p. 1087

Abstract

Read online

In order to accomplish the calibration and validation (Cal/Val) of altimeters, the Wanshan calibration site (WSCS) has been used as a calibration site for satellite altimeters since its completion in August 2019. In this paper, we introduced the WSCS and the dedicated equipment including permanent GNSS reference stations (PGSs), acoustic tide gauges (ATGs), and dedicated GNSS buoys (DGB), etc. placed on Zhi’wan, Wai’ling’ding, Dan’gan, and Miao’Wan islands of the WSCS. The PGSs data of Zhi’wan and Wai’ling’ding islands were processed and analyzed using the GAMIT/GLOBK (Version 10.7) and Hector (Version 1.9) software to define the datum for Cal/Val of altimeters in WSCS. The DGB was used to transfer the datum from the PGSs to the ATGs of Zhi’wan, Wai’ling’ding, and Dan’gan islands. Separately, the tidal and mean sea surface (MSS) corrections are needed in the Cal/Val of altimeters. We evaluated the global/regional tide models of FES2014, HAMTIDE12, DTU16, NAO99jb, GOT4.10, and EOT20 using the three in situ tide gauge data of WSCS and Hong Kong tide gauge data (No. B329) derived from the Global Sea Level Observing System. The HAMTIDE12 tide model was chosen to be the most accurate one to maintain the tidal difference between the locations of the ATGs and the altimeter footprints. To establish the sea surface connections between the ATGs and the altimeter footprints, a GPS towing body and a highly accurate ship-based SSH measurement system (HASMS) were used to measure the sea surface of this area in 2018 and 2022, respectively. The global/regional mean sea surface (MSS) models of DTU 2021, EGM 2008 (mean dynamic topography minus by CLS_MDT_2018), and CLS2015 were accurately evaluated using the in situ measured data and HY-2A altimeter, and the CLS2015 MSS model was used for Cal/Val of altimeters in WSCS. The data collected by the equipment of WSCS, related auxiliary models mentioned above, and the sea level data of the hydrological station placed on Dan’gan island were used to accomplish the Cal/Val of HY-2B, HY-2C, Jason-3, and Sentinel-3A (S3A) altimeters. The bias of HY-2B (Pass No. 375) was −16.7 ± 45.2 mm, with a drift of 0.5 mm/year. The HY-2C biases were −18.9 ± 48.0 mm with drifts of 0.0 mm/year and −5.6 ± 49.3 mm with −0.3 mm/year drifts for Pass No. 170 and 185, respectively. The Jason-3 bias was −4.1 ± 78.7 mm for Pass No. 153 and −25.8 ± 85.5 mm for Pass No. 012 after it has changed its orbits since April 2022, respectively. The biases of S3A were determined to be −16.5 ± 46.3 mm with a drift of −0.6 mm/year and −9.8 ± 30.1 mm with a drift of 0.5 mm/year for Pass No. 260 and 309, respectively. The calibration results show that the WSCS can commercialize the satellite altimeter calibration. We also discussed the calibration potential for a wide swath satellite altimeter of WSCS.

Keywords