Mathematica Bohemica (Apr 2024)
The unit group of some fields of the form $\mathbb{Q}(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l})$
Abstract
Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv3\pmod8$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb L=\mathbb{Q}(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l})$.
Keywords