F1000Research (Jun 2024)
Comparison of image quality between Deep learning image reconstruction and Iterative reconstruction technique for CT Brain- a pilot study [version 1; peer review: 2 approved]
Abstract
Background Non-contrast Computed Tomography (NCCT) plays a pivotal role in assessing central nervous system disorders and is a crucial diagnostic method. Iterative reconstruction (IR) methods have enhanced image quality (IQ) but may result in a blotchy appearance and decreased resolution for subtle contrasts. The deep-learning image reconstruction (DLIR) algorithm, which integrates a convolutional neural network (CNN) into the reconstruction process, generates high-quality images with minimal noise. Hence, the objective of this study was to assess the IQ of the Precise Image (DLIR) and the IR technique (iDose4) for the NCCT brain. Methods This is a prospective study. Thirty patients who underwent NCCT brain were included. The images were reconstructed using DLIR-standard and iDose4. Qualitative IQ analysis parameters, such as overall image quality (OQ), subjective image noise (SIN), and artifacts, were measured. Quantitative IQ analysis parameters such as Computed Tomography (CT) attenuation (HU), image noise (IN), posterior fossa index (PFI), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the basal ganglia (BG) and centrum-semiovale (CSO) were measured. Paired t-tests were performed for qualitative and quantitative IQ analyses between the iDose4 and DLIR-standard. Kappa statistics were used to assess inter-observer agreement for qualitative analysis. Results Quantitative IQ analysis showed significant differences (p<0.05) in IN, SNR, and CNR between the iDose4 and DLIR-standard at the BG and CSO levels. IN was reduced (41.8-47.6%), SNR (65-82%), and CNR (68-78.8%) were increased with DLIR-standard. PFI was reduced (27.08%) the DLIR-standard. Qualitative IQ analysis showed significant differences (p<0.05) in OQ, SIN, and artifacts between the DLIR standard and iDose4. The DLIR standard showed higher qualitative IQ scores than the iDose4. Conclusion DLIR standard yielded superior quantitative and qualitative IQ compared to the IR technique (iDose4). The DLIR-standard significantly reduced the IN and artifacts compared to iDose4 in the NCCT brain.