Mathematics (Nov 2022)

Generation of a Synthetic Database for the Optical Response of One-Dimensional Photonic Crystals Using Genetic Algorithms

  • Cesar Isaza,
  • Ivan Alonso Lujan-Cabrera,
  • Ely Karina Anaya Rivera,
  • Jose Amilcar Rizzo Sierra,
  • Jonny Paul Zavala De Paz,
  • Cristian Felipe Ramirez-Gutierrez

DOI
https://doi.org/10.3390/math10234484
Journal volume & issue
Vol. 10, no. 23
p. 4484

Abstract

Read online

This work proposes an optimization tool based on genetic algorithms for the inverse design of photonic crystals. Based on target reflectance, the algorithm generates a population of chromosomes where the genes represent the thickness of a layer of a photonic crystal. Each layer is independent of another. Therefore, the sequence obtained is a disordered configuration. In the genetic algorithm, two dielectric materials are first selected to generate the population. Throughout the simulation, the chromosomes are evaluated, crossed over, and mutated to find the best-fitted one based on an error function. The target reflectance was a perfect mirror in the visible region. As a result, it was found that obtaining photonic crystal configurations with a specific stop band with disordered arrangements is possible. The genetic information of the best-fitted individuals (layer sequence, optical response, and error) is stored in an h5 format. This method of generating artificial one-dimensional photonic crystal data can be used to train a neural network for solving the problem of the inverse design of any crystal with a specific optical response.

Keywords