Fermentation (Sep 2024)

Optimization of Bacterial Cellulose Production from Waste Figs by <i>Komagataeibacter xylinus</i>

  • Merve Yilmaz,
  • Yekta Goksungur

DOI
https://doi.org/10.3390/fermentation10090466
Journal volume & issue
Vol. 10, no. 9
p. 466

Abstract

Read online

This study aimed to use waste figs as an alternative substrate for bacterial cellulose (BC) production by Komagataeibacter xylinus and optimize the identified process parameters to maximize the concentration of BC. Among the nutrients screened by Plackett–Burman (PB) design, yeast extract was found to be significant in BC production. Response surface methodology was used to investigate the effect of fermentation parameters on BC production. A maximum BC concentration of (8.45 g/L), which is among the highest BC concentrations reported so far, was achieved at the optimum levels of fermentation variables (initial pH 6.05, initial sugar concentration 62.75 g/L, temperature 30 °C). The utilization of response surface methodology (RSM) proved valuable in both optimizing and finding the interactions between process variables during BC production. Scanning electron microscope (SEM) analysis showed a dense structure of BC, characterized by ribbon-like nanofibrils with diameters ranging from 23 to 90 nm while the attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectrum of BC confirmed that the material obtained was cellulose. The X-ray diffraction (XRD) analysis showed that the crystallinity of the BC samples was 70% for BC produced on waste fig medium and 61% for BC produced on Hestrin–Schramm (HS) medium. This is the first detailed study on the production of BC from waste figs, and the findings of this study demonstrated that waste figs can be used as an effective substrate for the production of BC.

Keywords