Parasites & Vectors (Oct 2022)
Short-term effects of tropical cyclones on the incidence of dengue: a time-series study in Guangzhou, China
Abstract
Abstract Background Limited evidence is available about the association between tropical cyclones and dengue incidence. This study aimed to examine the effects of tropical cyclones on the incidence of dengue and to explore the vulnerable populations in Guangzhou, China. Methods Weekly dengue case data, tropical cyclone and meteorological data during the tropical cyclones season (June to October) from 2015 to 2019 were collected for the study. A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was conducted to quantify the association between tropical cyclones and dengue, controlling for meteorological factors, seasonality, and long-term trend. Proportion of dengue cases attributable to tropical cyclone exposure was calculated. The effect difference by sex and age groups was calculated to identify vulnerable populations. The tropical cyclones were classified into two levels to compare the effects of different grades of tropical cyclones on the dengue incidence. Results Tropical cyclones were associated with an increased number of dengue cases with the maximum risk ratio of 1.41 (95% confidence interval 1.17–1.69) in lag 0 week and cumulative risk ratio of 2.13 (95% confidence interval 1.28–3.56) in lag 0–4 weeks. The attributable fraction was 6.31% (95% empirical confidence interval 1.96–10.16%). Men and the elderly were more vulnerable to the effects of tropical cyclones than the others. The effects of typhoons were stronger than those of tropical storms among various subpopulations. Conclusions Our findings indicate that tropical cyclones may increase the incidence of dengue within a 4-week lag in Guangzhou, China, and the effects were more pronounced in men and the elderly. Precautionary measures should be taken with a focus on the identified vulnerable populations to control the transmission of dengue associated with tropical cyclones. Graphical Abstract
Keywords