Scientific Reports (Jul 2024)

Design and field experiment of Codonopsis pilosula film covering transplanter

  • Weining Luo,
  • Wei Sun,
  • Ming Zhao,
  • Juanling Wang,
  • P. A. Simionescu

DOI
https://doi.org/10.1038/s41598-024-68396-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 17

Abstract

Read online

Abstract To address the low efficiency and high labor demands of manual Codonopsis pilosula cultivation, as well as the limitations of existing flat-type transplanting machines that create trenches of inconsistent depth hindering root growth and seedling emergence, a C. pilosula film-covered outcrop tilted transplanting machine was developed. Based on theoretical analysis of the prototype's key components and agronomic requirements for oblique C. pilosula transplanting, the structure and working parameters of the rotary tiller soil throwing device, soil lifting device, track-type soil conveying device, seedling throwing device, and film covering device were determined. The core components' working principles were analyzed, and the soil throwing process of the rotary tiller device was simulated using the discrete element method (DEM). A calculation domain was established, and the results showed that the average mass of the rotary tiller device was 49.44 kg, while the required soil lifting amount for the scraper-type soil lifting device was 21.84 kg, meeting the soil throwing requirements. Field experiments in 10 test areas demonstrated an average qualified rate of 89.50% for planting depth, 84.00% for planting posture, 90% for exposed plant spacing, 4.51 cm for plant spacing, and 8.67% coefficient of variation for planting spacing. These results meet industry standards for planting depth and planting spacing, confirming the machine's effectiveness in achieving high-quality tilted transplanting of C. pilosula seedlings.

Keywords