Leida xuebao (Apr 2021)
Research Progress of Multifunctional Metasurfaces Based on the Multiplexing Concept
Abstract
As a two-dimensional metamaterial equivalent, the gradient metasurface has become a focus of intense research hotspot since it exhibits powerful ability in manipulating electromagnetic waves due to its planar architecture, flexible selection between anisotropic and isotropic structures, and its abrupt discontinues phase. Here, we first reviewed recent research progress in multifunctional metasurfaces based on the multiplexing concept from a new perspective of combining one, two and even more degrees of freedom of polarization, frequency, incident angles and directions (excitation information), and output-wave position information. Therein, we achieve a clear outline of a research program and technical approach to multifunctional metasurfaces. Second, we predict future routes of development of multifunctional metasurfaces, aiming to afford novel avenues to the realization of more sophisticated and larger-capacity integrated wavefront control and multifunctional devices with new physics, which are promising for highly-integrated and miniaturized future communication and radar devices.
Keywords