Materials (Nov 2018)

Effect of Multidirectional Forging on the Grain Structure and Mechanical Properties of the Al–Mg–Mn Alloy

  • Mikhail S. Kishchik,
  • Anastasia V. Mikhaylovskaya,
  • Anton D. Kotov,
  • Ahmed O. Mosleh,
  • Waheed S. AbuShanab,
  • Vladimir K. Portnoy

DOI
https://doi.org/10.3390/ma11112166
Journal volume & issue
Vol. 11, no. 11
p. 2166

Abstract

Read online

The effect of isothermal multidirectional forging (IMF) on the microstructure evolution of a conventional Al⁻Mg-based alloy was studied in the strain range of 1.5 to 6.0, and in the temperature range of 200 to 500 °C. A mean grain size in the near-surface layer decreased with increasing cumulative strain after IMF at 400 °C and 500 °C; the grain structure was inhomogeneous, and consisted of coarse and fine recrystallized grains. There was no evidence of recrystallization when the micro-shear bands were observed after IMF at 200 and 300 °C. Thermomechanical treatment, including IMF followed by 50% cold rolling and annealing at 450 °C for 30 min, produced a homogeneous equiaxed grain structure with a mean grain size of 5 µm. As a result, the fine-grained sheets exhibited a yield strength and an elongation to failure 30% higher than that of the sheets processed with simple thermomechanical treatment. The IMF technique can be successfully used to produce fine-grained materials with improved mechanical properties.

Keywords