Energies (Sep 2021)

Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis

  • Seunghyun Cheon,
  • Manhee Byun,
  • Dongjun Lim,
  • Hyunjun Lee,
  • Hankwon Lim

DOI
https://doi.org/10.3390/en14196102
Journal volume & issue
Vol. 14, no. 19
p. 6102

Abstract

Read online

As many countries have tried to construct a hydrogen (H2) society to escape the conventional energy paradigm by using fossil fuels, methane pyrolysis (MP) has received a lot of attention owing to its ability to produce H2 with no CO2 emission. In this study, a techno-economic analysis including a process simulation, itemized cost estimation, and sensitivity and scenario analysis was conducted for the system of thermal-based and catalyst-based MP (TMP-S1 and CMP-S2), and the system with the additional H2 production processes of carbon (C) gasification and water–gas shift (WGS) reaction (TMPG-S3 and CMPG-S4). Based on the technical performance expressed by H2 and C production rate, the ratio of H2 combusted to supply the heat required and the ratio of reactants for the gasifier (C, Air, and water (H2O)), unit H2 production costs of USD 2.14, 3.66, 3.53, and 3.82 kgH2−1 from TMP-S1, CMP-S2, TMPG-S3, and CMPG-S4, respectively, were obtained at 40% H2 combusted and a reactants ratio for C-Air-H2O of 1:1:2. Moreover, trends of unit H2 production cost were obtained and key economic parameters of the MP reactor, reactant, and C selling price were represented by sensitivity analysis. In particular, economic competitiveness compared with commercialized H2 production methods was reported in the scenario analysis for the H2 production scale and C selling price.

Keywords