Metals (Oct 2017)

Study of the Influence of TiB Content and Temperature in the Properties of In Situ Titanium Matrix Composites

  • Cristina Arévalo,
  • Isabel Montealegre-Melendez,
  • Eva M. Pérez-Soriano,
  • Enrique Ariza,
  • Michael Kitzmantel,
  • Erich Neubauer

DOI
https://doi.org/10.3390/met7110457
Journal volume & issue
Vol. 7, no. 11
p. 457

Abstract

Read online

This work focuses on the study of the microstructure, hardening, and stiffening effect caused by the secondary phases formed in titanium matrices. These secondary phases originated from reactions between the matrix and boron particles added in the starting mixtures of the composites. Not only was the composite composition studied as an influencing factor in the behaviour of the composites, but also different operational temperatures. Three volume percentages of boron content were tested (0.9 vol %, 2.5 vol %, and 5 vol % of amorphous boron). The manufacturing process used to produce the composites was inductive hot pressing, which operational temperatures were between 1000 and 1300 °C. Specimens showed optimal densification. Moreover, microstructural studies revealed the formation of TiB in various shapes and proportions. Mechanical testing confirmed that the secondary phases had a positive influence on properties of the composites. In general, adding boron particles increased the hardness and stiffness of the composites; however rising temperatures resulted in greater increases in stiffness than in hardness.

Keywords