Journal of Lipid Research (Sep 2024)
The metabolic signature of blood lipids: a causal inference study using twins
Abstract
Dyslipidemia is one of the cardiometabolic risk factors that influences mortality globally. Unraveling the causality between blood lipids and metabolites and the complex networks connecting lipids, metabolites, and other cardiometabolic traits can help to more accurately reflect the body’s metabolic disorders and even cardiometabolic diseases. We conducted targeted metabolomics of 248 metabolites in 437 twins from the Chinese National Twin Registry. Inference about Causation through Examination of FAmiliaL CONfounding (ICE FALCON) analysis was used for causal inference between metabolites and lipid parameters. Bidirectional mediation analysis was performed to explore the linkages between blood lipids, metabolites, and other seven cardiometabolic traits. We identified 44, 1, and 31 metabolites associated with triglyceride (TG), total cholesterol (TC), and high-density lipoprotein-cholesterol (HDL-C), most of which were gut microbiota-derived metabolites. There were 9, 1, and 14 metabolites that showed novel associations with TG, TC, and HDL-C, respectively. ICE FALCON analysis found that TG and HDL-C may have a predicted causal effect on 23 and six metabolites, respectively, and one metabolite may have a predicted causal effect on TG. Mediation analysis discovered 14 linkages connecting blood lipids, metabolites, and other cardiometabolic traits. Our study highlights the significance of gut microbiota-derived metabolites in lipid metabolism. Most of the identified cross-sectional associations may be due to the lipids having a predicted causal effect on metabolites, but not vice versa, nor are they due to family confounding. These findings shed new light on lipid metabolism and personalized management of cardiometabolic diseases.