Gong-kuang zidonghua (May 2022)

Design of coal mine inspection robot control system

  • CAI Zhihua,
  • ZHOU Dongxu,
  • ZHAO Minghui

DOI
https://doi.org/10.13272/j.issn.1671-251x.2021120034
Journal volume & issue
Vol. 48, no. 5
pp. 112 – 117

Abstract

Read online

The traditional control system of coal mine inspection robot uses bare metal program. There are problems such as poor real-time performance and easy data loss. In order to solve the above problems, a coal mine inspection robot control system based on QT and RT-Thread is designed. The system is divided into two parts according to the function, including the upper computer-human-computer interaction console and the lower computer-microcontroller. The upper computer of the inspection robot control system is developed by using QT software. The upper computer provides a human-computer interaction interface for users, completes remote control of the inspection robot, displays sensor data and alarm records, and improves the human-computer interaction performance. The lower computer of the inspection robot control system is developed by using RT-Thread real-time operating system. Through the thread scheduler, thread tasks such as sensor data acquisition, Ethernet communication, radar signal processing and indicator light alarms are scheduled in a time-slice rotation manner. The macro parallelism between multithreaded tasks in the process of robot automatic inspection is realized, and the real-time performance of the control system is improved. The circular queue data buffer is designed in the control system to solve the problem of data loss caused by the asynchronous running clock between the upper and lower computers. The kernel object semaphore is introduced to optimize the circular queue data buffer, solve the problem of resource mutual exclusion between thread tasks. Therefore, it realizes the stable and reliable data transmission between upper and lower computers for a long time. The test results show that the average delay time of thread switch is 1.08 μs, and the data loss rate is only 0.06% when the data transmission period is 100 ms. The system has high real-time performance, and the stability of thread switching process is good. The system ensures the reliability of mass data transmission.

Keywords