Environment International (Feb 2021)

Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach

  • Julian Haas,
  • Ralf Nauen

Journal volume & issue
Vol. 147
p. 106372

Abstract

Read online

Honey bee (Apis mellifera) first-tier pesticide risk assessment is largely based on standardized laboratory toxicity bioassays after both acute and chronic exposure. Recent research on honey bee cytochrome P450 monooxygenases (P450s) uncovered CYP9Q3 as the molecular determinant mediating neonicotinoid insecticide selectivity and explaining why certain neonicotinoids such as thiacloprid show > 1000-fold lower acute toxicity than others (e.g. imidacloprid). Here this knowledge is leveraged for mechanistic risk assessment at the molecular level using a fluorescence-based high-throughput in vitro assay, predicting the interaction of diverse pesticidal chemotypes, including azole fungicides, with recombinantly expressed honey bee CYP9Q enzymes, known to metabolize thiacloprid, acetamiprid and tau-fluvalinate. Some azole fungicides were shown to be synergistic in combination with certain insecticides, including neonicotinoids and pyrethroids, whereas others such as prothioconazole were not. We demonstrate that biochemical CYP9Q2/CYP9Q3 inhibition data of azoles revealed a striking correlation with their synergistic potential at the organismal level, and even allow to explain combined toxicity effects observed for tank mixtures under field conditions. Our novel toxicogenomics-based approach is designed to complement existing methods for pesticide risk assessment with unprecedented screening capacity, by utilizing honey bee P450 enzymes known to confer pesticide selectivity, in order to biochemically address issues of ecotoxicological concern.

Keywords