Regenerative Therapy (Mar 2025)
Self-assembling peptide nanofibers and nanoceramics in a model of alveolar bone repair: Insights from in vivo experiments and clinical trial
Abstract
Introduction: Tooth extraction initiates a cascade of homeostatic and structural modifications within the periodontal tissues, culminating in alveolar ridge resorption. To prevent ridge resorption following extraction and facilitate successful placement of an implant-supported prosthesis, alveolar ridge preservation was performed. Methods: In this study, the biocompatibility of a nanocomposite consisting of self-assembling peptide nanofibers (organic phase) and tri-calcium phosphate-nano hydroxyapatite (mineral phase), was evaluated in rabbits. Subsequently, the nanocomposite was grafted onto a model of alveolar bone repair in patients. Results: The in vivo findings revealed no significant differences in the irritation ranking score and average thickness of the reaction zone between the nanocomposite and control groups. Furthermore, there were no significant differences in the appearance of necrosis, granulation tissue, fibroplasia, neovascularization, and hemorrhage as well as in the number of neutrophils, mast cells, lymphocytes, macrophages, and giant cells between the two groups. The defect area was completely filled with newly formed bone trabeculae and cavities containing bone marrow, indicating angiogenesis, while remnants of the scaffold were observed in the deeper region of the defects, adjacent to the bone marrow, considered osteoinductive. The clinical trial findings (TRN: IR.IUMS.REC.1401.355) demonstrated robust bone regeneration after 3.5 months of socket preservation, whereas the bone in the control group experienced atrophy. The nanocomposite facilitated soft tissue healing without any signs of infection or other periodontal malfunction. Conclusion: The application of nanotechnology has enhanced the bio-functionality of alloplastic materials, positioning this nanocomposite a promising alternative to autografts and allografts in alveolar bone repair.