Cells (Mar 2023)
Expression of Checkpoint Molecules in the Tumor Microenvironment of Intrahepatic Cholangiocarcinoma: Implications for Immune Checkpoint Blockade Therapy
Abstract
Background: The tumor microenvironment (TME) in cholangiocarcinoma (CCA) influences the immune environment. Checkpoint blockade is promising, but reliable biomarkers to predict response to treatment are still lacking. Materials and Methods: The levels of checkpoint molecules (PD-1, PD-L1, PD-L2, LAG-3, ICOS, TIGIT, TIM-3, CTLA-4), macrophages (CD68), and T cells (CD4 and CD8 cells) were assessed by multiplexed immunofluorescence in 50 intrahepatic cases. Associations between marker expression, immune cells, and region of expression were studied in the annotated regions of tumor, interface, sclerotic tumor, and tumor-free tissue. Results: ICCA demonstrated CD4_TIM-3 high densities in the tumor region of interest (ROI) compared to the interface (p = 0.014). CD8_PD-L1 and CD8_ICOS densities were elevated in the sclerotic tumor compared to the interface (p = 0.011 and p = 0.031, respectively). In a multivariate model, high expression of CD8_PD-L2 (p = 0.048) and CD4_ICOS_TIGIT (p = 0.011) was associated with nodal metastases. Conclusions: High densities of PD-L1 were more abundant in the sclerotic tumor region; this is meaningful for the stratification of immunotherapy. Lymph node metastasis correlates with CD4_ICOS_TIGIT co-expression and CD8_PD-L2 expression, indicating the checkpoint expression profile of patients with a poor prognosis. Also, multiple co-expressions occur, and this potentially suggests a role for combination therapy with different immune checkpoint targets than just PD-1 blockade monotherapy.
Keywords