Journal of Rehabilitation Medicine (Jun 2021)

Arm impairment and walking speed explain real-life activity of the affected arm and leg after stroke

  • Sofi A. Andersson,
  • Anna Danielsson,
  • Fredrik Ohlsson,
  • Jan Wipenmyr,
  • Margit Alt Murphy

DOI
https://doi.org/10.2340/16501977-2838
Journal volume & issue
Vol. 53, no. 6
p. jrm00210

Abstract

Read online

Objective: To determine to what extent accelerometer-based arm, leg and trunk activity is associated with sensorimotor impairments, walking capacity and other factors in subacute stroke. Design: Cross-sectional study. Patients: Twenty-six individuals with stroke (mean age 55.4 years, severe to mild motor impairment). Methods: Data on daytime activity were collected over a period of 4 days from accelerometers placed on the wrists, ankles and trunk. A forward stepwise linear regression was used to determine associations between free-living activity, clinical and demographic variables. Results: Arm motor impairment (Fugl-Meyer Assessment) and walking speed explained more than 60% of the variance in daytime activity of the more-affected arm, while walking speed alone explained 60% of the more-affected leg activity. Activity of the less-affected arm and leg was associated with arm motor impairment (R2 = 0.40) and independence in walking (R2 = 0.59). Arm activity ratio was associated with arm impairment (R2 = 0.63) and leg activity ratio with leg impairment (R2 = 0.38) and walking speed (R2 = 0.27). Walking-related variables explained approximately 30% of the variance in trunk activity. Conclusion: Accelerometer-based free-living activity is dependent on motor impairment and walking capacity. The most relevant activity data were obtained from more-affected limbs. Motor impairment and walking speed can provide some information about real-life daytime activity levels.

Keywords