Stem Cell Research & Therapy (Sep 2020)
FOXQ1 promotes the osteogenic differentiation of bone mesenchymal stem cells via Wnt/β-catenin signaling by binding with ANXA2
Abstract
Abstract Background This study investigated the role of Forkhead box Q1 (FOXQ1) in the osteogenic differentiation of bone mesenchymal stem cells. Methods Mouse bone mesenchymal stem cells (mBMSCs) were transfected with lentivirus to generate Foxq1-overexpressing mBMSCs, Foxq1-suppressed mBMSCs, and mBMSC controls. The activity of osteogenic differentiation was evaluated with alizarin red staining, alkaline phosphatase activity assay, and RT-qPCR. Wnt/β-catenin signaling activities were compared among groups by TOPFlash/FOPFlash assay, immunofluorescence staining, and western blot assay of beta-catenin (CTNNB1). Coimmunoprecipitation mass spectrometry was also carried out to identify proteins binding with FOXQ1. Results Our data showed that FOXQ1 expression was positively correlated with the osteogenic differentiation of the mBMSCs. FOXQ1 also promoted the nuclear translocation of CTNNB1 in the mBMSCs, enhancing Wnt/β-catenin signaling, which was also shown to be essential for the osteogenic differentiation-promoting effect of FOXQ1 in the mBMSCs. Annexin A2 (ANXA2) was bound with FOXQ1, and its depletion reversed the promoting effect of FOXQ1 on Wnt/β-catenin signaling. Conclusion These results showed that FOXQ1 binds with ANXA2, promoting Wnt/β-catenin signaling in bone mesenchymal stem cells, which subsequently promotes osteogenic differentiation.
Keywords