Geophysical Research Letters (Oct 2024)
Multi‐Decadal Dynamics of Global Rainfall Interception and Their Drivers
Abstract
Abstract Rainfall interception loss (Ei) is a difficult to study and poorly understood flux compared to transpiration and soil evaporation. The influence of climate and vegetation on Ei is not well known at continental‐to‐global and annual‐to‐decadal scales. Here, we use a long‐term multi‐product approach to examine the global trends in Ei, and further utilize a recently developed and validated dataset to isolate the relative contributions of precipitation, vegetation and evaporative demand. At decadal timescales, increasing Ei is largely driven by global vegetation greening through an increase in the intercepting surface and storage capacity, while its inter‐annual variations are mainly controlled by changes in precipitation, largely related to El Niño/Southern Oscillation. Increasing evaporative demand, driven by atmospheric warming, also positively contributes to the global rise in Ei. This study provides new perspectives for further understanding the impacts of climate change on the terrestrial hydrological cycle.
Keywords