Hydrology (Aug 2018)

Measuring and Calculating Current Atmospheric Phosphorous and Nitrogen Loadings to Utah Lake Using Field Samples and Geostatistical Analysis

  • Jacob M. Olsen,
  • Gustavious P. Williams,
  • A. Woodruff Miller,
  • LaVere Merritt

DOI
https://doi.org/10.3390/hydrology5030045
Journal volume & issue
Vol. 5, no. 3
p. 45

Abstract

Read online

Atmospheric nutrient loading through wet and dry deposition is one of the least understood, yet can be one of the most important, pathways of nutrient transport into lakes and reservoirs. Nutrients, specifically phosphorus and nitrogen, are essential for aquatic life but in excess can cause accelerated algae growth and eutrophication and can be a major factor that causes harmful algal blooms (HABs) that occur in lakes and reservoirs. Utah Lake is subject to eutrophication and HABs. It is susceptible to atmospheric deposition due to its large surface area to volume ratio, high phosphorous levels in local soils, and proximity to Great Basin dust sources. In this study we collected and analyzed eight months of atmospheric deposition data from five locations near Utah Lake. Our data showed that atmospheric deposition to Utah Lake over the 8-month period was between 8 to 350 Mg (metric tonne) of total phosphorus and 46 to 460 Mg of dissolved inorganic nitrogen. This large range is based on which samples were used in the estimate with the larger numbers including results from “contaminated samples”. These nutrient loading values are significant for Utah Lake in that it has been estimated that only about 17 Mg year−1 of phosphorus and about 200 Mg year−1 of nitrogen are needed to support a eutrophic level of algal growth. We found that atmospheric deposition is a major contributor to the eutrophic nutrient load of Utah Lake.

Keywords