E3S Web of Conferences (Jan 2019)

Small Strain Stiffness of Artificially Cemented Soft Clay: Modelling the Effect of Structure Degradation

  • Khan Qasim,
  • Ng Yannick,
  • Ku Taeseo

DOI
https://doi.org/10.1051/e3sconf/20199211009
Journal volume & issue
Vol. 92
p. 11009

Abstract

Read online

This paper presents a study on the evolution of small strain stiffness (Gmax) along vertical and horizontal directions for lightly cemented clay. Soft clays have historically been a subject for studying the evolution of stiffness anisotropy under varying loading conditions. These studies have focused on stress history (overconsolidation) effects as well. However, for lightly cemented clays, such studies are limited and their main scope has primarily been on the evolution of vertically aligned stiffness (GVH) at varying effective confining stresses. This study investigates the effect of isotropic loading on uncemented and lightly cemented kaolin clay. Kaolin clay mixed with 10% cement is used in this study. Stiffness measurements have been conducted using bender elements for obtaining GVH and GHH hence resulting in the measurement of vertical and horizontal stiffness values respectively. By comparing the behaviour of both samples, the influence of bonding and fabric due to cementation on the evolution of stiffness and anisotropy is studied. In order to characterize the behavior of structure in cemented soil with confining stress, a modelling equation is applied for the cemented sample to predict the variation of Gmax before and after yielding.