Water (Feb 2022)

Zooplankton as Mercury Repository in Lake Maggiore (Northern Italy): Biomass Composition and Stable Isotope Analysis

  • Laura Marziali,
  • Roberta Piscia,
  • Lucia Valsecchi,
  • Claudio Roscioli,
  • Marina Manca

DOI
https://doi.org/10.3390/w14050680
Journal volume & issue
Vol. 14, no. 5
p. 680

Abstract

Read online

Total mercury (THg) and methylmercury (MeHg) concentrations were analyzed in zooplankton (≥450 and ≥850 µm size fractions) collected seasonally over 6 years in Lake Maggiore (Northern Italy), characterized by a legacy mercury contamination. Analysis of δ 15N and δ13C stable isotopes was carried out to trace how taxa with different trophic levels and carbon sources contributed to mercury concentrations and trends. THg ranged between 44–213 µg kg−1 d.w. and MeHg 15–93 µg kg−1 d.w., representing 24–61% of THg. Values showed strong seasonal variations, with peaks in winter, due to the high biomass of predator taxa (Bythotrephes longimanus, Leptodora kindtii) and of Daphnia longispina-galeata gr. A positive correlation between THg and MeHg and δ15N signature was observed. D. longispina-galeata gr. prevailed in both size fractions, substantially contributing to THg and MeHg concentrations. Δ13C signature was strictly bound to lake thermal circulation dynamics. Mercury stock in the zooplankton compartment ranged between 19–140 ng THg m−2 and 6–44 ng MeHg m−2 for the ≥450 µm size fraction and between 2–66 ng THg m−2 and 1–7 ng MeHg m−2 for the ≥850 µm fraction, with the highest values in spring when zooplanktivorous fish actively prey in the pelagic zone. The results highlighted the crucial role of zooplankton as a repository of mercury, easily available to higher trophic levels.

Keywords