مهندسی عمران شریف (May 2020)
A SEMI-EMPIRICAL MODEL FOR PREDICTING SEISMIC PERMANENT DISPLACEMENT OF SLOPES BASED ON IRAN EARTHQUAKE RECORDS
Abstract
The Iranian plateau is one of the seismic active zones of shallow crustal earthquakes in the world so that annually thousands earthquake occurs in the Iranian plateau. Meanwhile, due to the effect of topographic and geological characteristics of its relief, the Iranian plateau is subjected to diffuse phenomena of landslide, especially in Alborz and Zagros mountains, which are exacerbated by the high seismic activity. The earthquake-induced landslides have reportedly caused major human fatalities and economic losses in Iran. The prediction of sliding displacement can decrease landslide hazards to the civil engineering strcutures. The semi-empirical models have recently received more attention from the geotechnical earthquake engineering practitioners because of their applicability, simplicity, and reasonable performance in large displacements. The rigid block-rotation approach was developed based on the increase of critical acceleration caused by the downward movement of sliding soil mass. This paper represents a semi-empirical model for the earthquake-induced displacement of Iran's slopes using the rigid block-rotation approach. A collection of 3954 strong motion records was used to generate the model based on the results of slidinganalyses. The semi-empirical model is presented based on more than 138,000 rigid block-rotation analyses using several input parameters. The model predicts sliding displacement in terms of yield coefficient $(k_y)$, slip length of sliding mass (L), and Arias Intensity $(I_a)$. It is shown that slip length of sliding mass has an important role in the prediction of seismic permanent displacement, which is generally ignored in the semi-empirical models. The proposed model can be simply used to estimate the seismic displacement of slopes and earthquake-landslide hazards in seismic prone regions of the Iranian plateau.
Keywords