Machines (Jun 2022)
An Improved Convolutional-Neural-Network-Based Fault Diagnosis Method for the Rotor–Journal Bearings System
Abstract
More layers in a convolution neural network (CNN) means more computational burden and longer training time, resulting in poor performance of pattern recognition. In this work, a simplified global information fusion convolution neural network (SGIF-CNN) is proposed to improve computational efficiency and diagnostic accuracy. In the improved CNN architecture, the feature maps of all the convolutional and pooling layers are globally convoluted into a corresponding one-dimensional feature sequence, and then all the feature sequences are concatenated into the fully connected layer. On this basis, this paper further proposes a novel fault diagnosis method for a rotor–journal bearing system based on SGIF-CNN. Firstly, the time-frequency distributions of samples are obtained using the Adaptive Optimal-Kernel Time–Frequency Representation algorithm (AOK-TFR). Secondly, the time–frequency diagrams of the training samples are utilized to train the SGIF-CNN model using a shallow information fusion method, and the trained SGIF-CNN model can be tested using the time–frequency diagrams of the testing samples. Finally, the trained SGIF-CNN model is transplanted to the equipment’s online monitoring system to monitor the equipment’s operating conditions in real time. The proposed method is verified using the data from a rotor test rig and an ultra-scale air separator, and the analysis results show that the proposed SGIF-CNN improves the computing efficiency compared to the traditional CNN while ensuring the accuracy of the fault diagnosis.
Keywords