Algorithms (Aug 2024)
Preptimize: Automation of Time Series Data Preprocessing and Forecasting
Abstract
Time series analysis is pivotal for business and financial decision making, especially with the increasing integration of the Internet of Things (IoT). However, leveraging time series data for forecasting requires extensive preprocessing to address challenges such as missing values, heteroscedasticity, seasonality, outliers, and noise. Different approaches are necessary for univariate and multivariate time series, Gaussian and non-Gaussian time series, and stationary versus non-stationary time series. Handling missing data alone is complex, demanding unique solutions for each type. Extracting statistical features, identifying data quality issues, and selecting appropriate cleaning and forecasting techniques require significant effort, time, and expertise. To streamline this process, we propose an automated strategy called Preptimize, which integrates statistical and machine learning techniques and recommends prediction model blueprints, suggesting the most suitable approaches for a given dataset as an initial step towards further analysis. Preptimize reads a sample from a large dataset and recommends the blueprint model based on optimization, making it easy to use even for non-experts. The results of various experiments indicated that Preptimize either outperformed or had comparable performance to benchmark models across multiple sectors, including stock prices, cryptocurrency, and power consumption prediction. This demonstrates the framework’s effectiveness in recommending suitable prediction models for various time series datasets, highlighting its broad applicability across different domains in time series forecasting.
Keywords